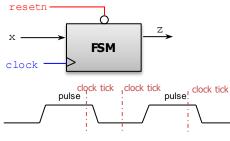

Solutions - Final Exam

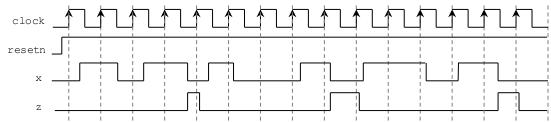
(December 13th @ 7:00 pm)

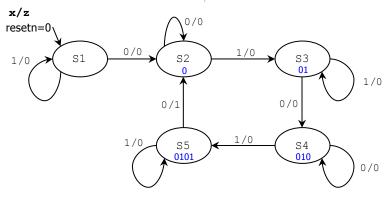
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (10 PTS)

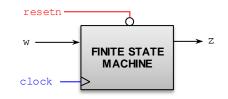
• Given the following circuit, complete the timing diagram. The LUT 6-to-6 implements the following function: $OLUT = \lceil sqrt(ILUT) \rceil$, where ILUT is a 6-bit unsigned number. For example, $ILUT = 53 (110101_2) \rightarrow OLUT = \lceil sqrt(53) \rceil = 8 (001000_2)$

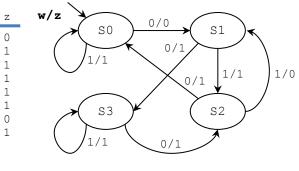



PROBLEM 2 (12 PTS)

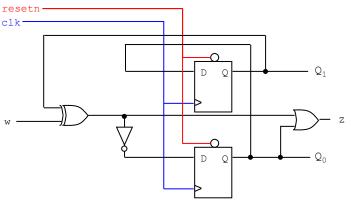

• Complete the timing diagram of the following circuit. $G = G_3G_2G_1G_0 = 0110$, $Q = Q_3Q_2Q_1Q_0$ resetn $G = G_3G_2G_1G_0 = 0110$, $Q = Q_3Q_2Q_1Q_0$ $G = G_3G_3G_1G_0 = 0110$, $Q = Q_3Q_2Q_1Q_0$ $G = G_3G_3G_1G_0 = 0110$, $Q = Q_3Q_2Q_1Q_0$ $G = G_3G_1G_1G_0 = 0110$, $Q = Q_3Q_2Q_1Q_0$

PROBLEM 3 (21 PTS)


- Two-pulse Detector: The timing diagram shows the behavior of the circuit. The FSM generates z=1 when it detects two pulses. Note how in this design, the output z is 1 as soon as the second $1 \rightarrow 0$ transition is detected. Once the two pulses are detected, the FSM looks for a new pair of pulses. Assumption: The circuit detects a '1' or a '0' on x, this happens on the rising clock edge.
 - ✓ Draw the State Diagram (any representation) of this FSM (9 pts).



- The following FSM has 4 states, one input w and one output z. (12 pts)
 - ✓ The excitation equations are given by:
 - $Q_1(t+1) \leftarrow Q_0(t)$
 - $Q_0(t+1) \leftarrow \overline{Q_1(t)} \oplus w$
 - ✓ The output equation is given by: $z = Q_0(t) + (Q_1(t) \oplus w)$

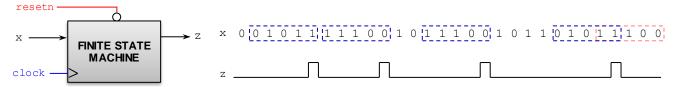


- ✓ Provide the State Diagram (any representation) and the Excitation Table.
- ✓ Sketch the Finite State Machine circuit.

PRESENT STATE	NEXT STA	TE					
		1			PRESENT	NEXT	
$w Q_1Q_0(t)$	Q_1Q_0 (t+1)) z		W	STATE	STATE	Z
0 0 0	0 1	0		0	S0	S1	0
0 0 1	1 1	1		0	S1	s3	1
0 1 0	0 0	1		0	S2	S0	1
0 1 1	1 0	1		0	s3	S2	1
1 0 0	0 0	1	5	1	S0	S0	1
1 0 1	1 0	1	,	1	S1	S2	1
1 1 0	0 1	0		1	S2	S1	0
1 1 1	1 1	1		1	s3	S3	1
resetn ———			_		'	'	

resetn = 0

2


 State Assignment:

 S0: Q=00
 S1: Q=01

 S2: Q=10
 S3: Q=11

PROBLEM 4 (11 PTS)

• Sequence detector: This FSM has to generate z=1 when it detects the sequence 01011 or 11100. Once the sequence is detected, the circuit looks for a new sequence. Note that once we start detecting a sequence, we prioritize the sequence that we have over the other (e.g.: last sequence inside a dotted red rectangle is not considered).

- \checkmark Draw the State Diagram (any representation) and provide the State Table of this circuit with input x and output z.
- ✓ Which type is this FSM?
- (Mealy)
- (Moore)

Why? __

	• •
resetn = 0 $0/0$ $1/1$	
0/0	
x/z $\begin{array}{c} x/z \\ \hline \\ S1 \\ \hline \\ 0 \\ \end{array}$ $\begin{array}{c} 0/0 \\ \hline \\ S2 \\ \hline \\ 0 \\ \end{array}$ $\begin{array}{c} 1/0 \\ \hline \\ S3 \\ \hline \\ 01 \\ \end{array}$ $\begin{array}{c} 0/0 \\ \hline \\ 010 \\ \end{array}$ $\begin{array}{c} 35 \\ \hline \\ 0101 \\ \end{array}$	
1/0 0/0 1/0 1/0 0/1	
This is a Mealy FSM. The output z depends on the input as well as on the present state.	
* Excitation Table shown only for reference	

* Excitation Table shown only for reference.

	NESZE		PRESENT STATE	NEXTSTATE				
State Assignme		Х	PRESENT STATE	NEXT STATE	Z	$\times Q_3Q_2Q_1Q_0(t)$	Q ₃ Q ₂ Q ₁ Q ₀ (t+1)	Z
S1: Q=0000 S3: Q=0010	S2: Q=0001 S4: Q=0011	0	S1 S2	S2 S2	0 0	0 0 0 0 0 0 0 0 0 1	0 0 0 1 0 0 0 1	0
S5: Q=0100	S6: Q=0101	0	S3	S4	0	0 0 0 1 0	0 0 1 1	0
S7: Q=0110	S8: Q=0111	0	S4	S2	0	0 0 0 1 1	0 0 0 1	0
S9: Q=1000		0	S5	S4	0	0 0 1 0 0	0 0 1 1	0
		0	S6	S2	0	0 0 1 0 1	0001	0
		0	S7	S2	0	0 0 1 1 0	0001	0
		0	S8	S9	0	0 0 1 1 1	1 0 0 0	0
		0	S9	S1	1	0 1 0 0 0	0 0 0 0	1
		1	S1	S6	0	0 1 0 0 1	X X X X	X
		1	S2	S3	0	0 1 0 1 0	X X X X	X
		1	S3	S7	0	0 1 0 1 1	X X X X	X
		1	S4	S5	0	0 1 1 0 0	X X X X	X
		1	S5	S1	1	0 1 1 0 1	X X X X	X
		1	S6	S7	0	0 1 1 1 0	X X X X	X
		1	s7	S8	0	0 1 1 1 1	X X X X	X
		1	S8	S8	0	1 0 0 0 0	0 1 0 1	0
		1	S9	s3	0	1 0 0 0 1	0 0 1 0	0
						1 0 0 1 0	0 1 1 0	0
						1 0 0 1 1	0 1 0 0	0
						1 0 1 0 0	0 0 0 0	1
						1 0 1 0 1	0 1 1 0	0
						1 0 1 1 0	0 1 1 1	0
						1 0 1 1 1	0 1 1 1	0
						1 1 0 0 0	0 0 1 0	0
						1 1 0 0 1	X X X X	X
						1 1 0 1 0	X X X X	X
						1 1 0 1 1	X X X X	X
						1 1 1 0 0	X X X X	X

Χ

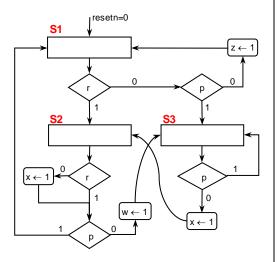
Χ

X X X X

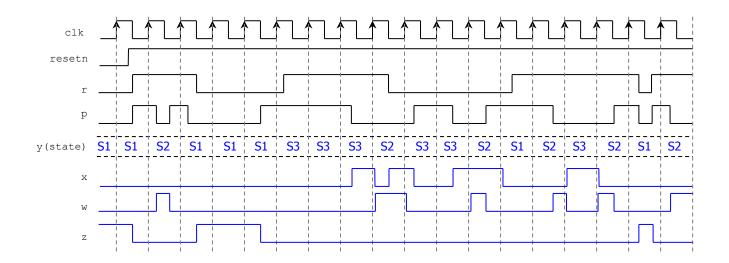
X X X X

X X X X

1 1 1 0 1


1 1 1 1 0

1 1 1 1 1

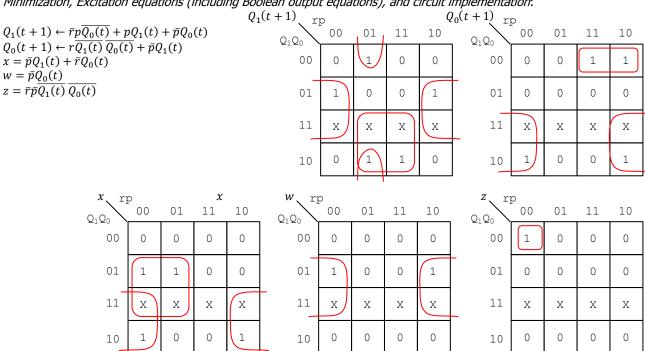

PROBLEM 5 (28 PTS)

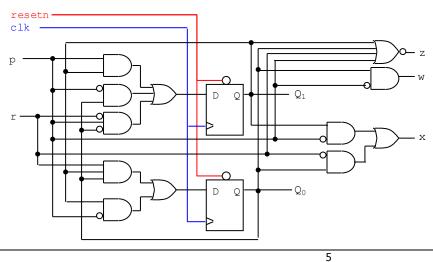
- Draw the State Diagram (in ASM form) of the FSM whose VHDL description in shown below. (5 pts)
- Complete the Timing Diagram. (7 pts)
- Provide the State Table and the Excitation Table. Is it a <u>Mealy</u> or a <u>Moore</u> FSM? (6 pts).
- Provide the excitation equations and the Boolean output equations (simplify your circuit: K-maps or Quine-McCluskey).
- Sketch the circuit. (3 pts)

```
library ieee;
use ieee.std_logic_1164.all;
entity myfsm is
   port ( clk, resetn: in std_logic;
        r, p: in std_logic;
        x, w, z: out std_logic);
end myfsm;
```



```
architecture behavioral of myfsm is
   type state is (S1, S2, S3);
   signal y: state;
begin
  Transitions: process (resetn, clk, r, p)
  begin
     if resetn = '0' then y \le S1;
     elsif (clk'event and clk = '1') then
        case y is
          when S1 =>
             if r = '1' then
                y <= S2;
             else
                if p = '1' then y \le S3; else y \le S1; end if;
             end if;
           when S2 =>
             if p = '1' then y \le S1; else y \le S3; end if;
           when S3 =>
             if p = '1' then y \le S3; else y \le S2; end if;
        end case;
     end if;
  end process;
  Outputs: process (y, r, p)
  begin
      x <= '0'; w <= '0'; z <= '0';
      case y is
         when S1 \Rightarrow if r = '0' then
                         if p = '0' then
                            z <= '1';
                         end if;
                      end if;
          when S2 \Rightarrow if r = '0' then x <= '1'; end if;
                     if p = 0' then w \le 1'; end if;
         when S3 \Rightarrow if p = '0' then x \Leftarrow '1'; end if;
      end case;
  end process;
end behavioral;
```

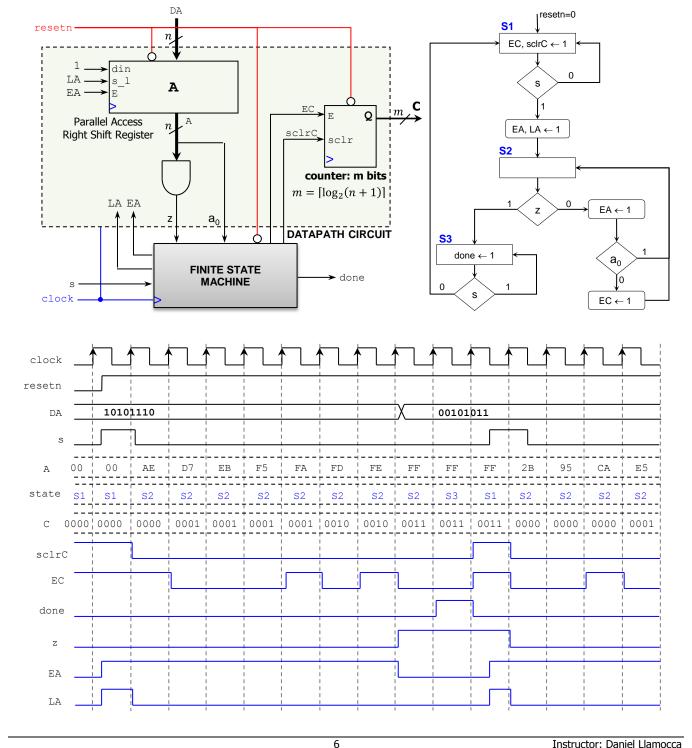


4


State Table and Excitation Table:

		PRESENT	NEXT			PRESENT STATE	NEXTSTAT	E
r	р	STATE	STATE	X V	V Z	r p Q ₁ Q ₀ (t)	$Q_1Q_0(t+1)$	X W Z
0	0	S1	S1	0 () 1	0 0 0 0	0 0	0 0 1
0	0	S2	s3	1 1	. 0	0 0 0 1	1 0	1 1 0
0	0	S3	S2	1 (0 (0 0 1 0	0 1	1 0 0
0	1	S1	S3	0 (0 (0 0 1 1	ХХ	XXX
0	1	S2	S1	1 (0 (0 1 0 0	1 0	0 0 0
0	1	S3	S3	0 (0 (0 1 0 1	0 0	1 0 0
1	0	S1	S2	0 (0 (0 1 1 0	1 0	0 0 0
1	0	S2	s3	0 1	. 0	0 1 1 1	XX	XXX
1	0	s3	S2	1 (0 (1 0 0 0	0 1	0 0 0
1	1	S1	S2	0 (0 (1 0 0 1	1 0	0 1 0
1	1	S2	S1	0 (0 (1 0 1 0	0 1	1 0 0
1	1	s3	s3	0 (0 (1 0 1 1	хх	X X X
a						1 1 0 0	0 1	0 0 0
State Assign						1 1 0 1	0 0	0 0 0
S1: Q=00		S2: Q=01				1 1 1 0	1 0	0 0 0
S3: Q=10						1 1 1 1	ХХ	X X X

This is a Mealy FSM. The outputs x, w, z depend on the input as well as on the present state.

Minimization, Excitation equations (including Boolean output equations), and circuit implementation:



PROBLEM 6 (18 PTS)

- "Counting 0's" Circuit: It counts the number of bits in register A that has the value of '0'.
 - ✓ Example: for n = 8: if A = 00110010, then C = 0101.
 - ✓ The behavior (on the clock tick) of the generic components is as follows:

```
m-bit counter (modulo-n+1): If E=0, the count stays.
                                                             n-bit Parallel access shift register: If E=0, the output is kept.
                                                              if E = 1 then
if E = 1 then
                                                                 if s_1 = '1' then
    if sclr = 1 then
       0 \leftarrow 0
                                                                     0 ← D
    else
                                                                  else
        \text{Q} \; \leftarrow \; \text{Q+1}
                                                                     Q \leftarrow \text{shift in 'din' (to the right)}
   end if;
                                                                end if;
end if:
                                                             end if;
```

Complete the timing diagram where n = 8, m = 4. A is represented in hexadecimal format, while C is in binary format.

